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Abstract. We study the critical properties of the weakly disordered p-component ferromagnet 
in term of the renormalization group (RG) theory generalized to take into account the replica 
symmetry breaking (WB) effects coming from the multiple local minima solutions of the mean- 
field equations. Recently it has been shown that for p c 4 the traditional RC flows at dimensions 
D = 4 - f, which are usually considered as describing the disorder-induced universal critical 
behaviour, are unstable with respect to the WE potentials as found in spin glasses, and a new 
type of stable one-step RSB fixed point has been discovered 111. Here it is demonsuated that for 
a general type of the Parisi RSB.S~JUC~UES there exist no stable fixed points, and the RG flows lead 
to the strong-coupling regime at the finite scale R, -. exp(l/u), where U is the small parameter 
describing the disorder. The physical consequences of the obtained RG solutions are discussed. 
In particular. we argue that discovered RSB shong-coupling phenomena indicate the onset of a 
new spin-glass-type critical behaviour in the temperature interval T < r. - exp(-l/u) near Tr. 
The possible relevance of the considered RSB effects for the Griffith phase is also discussed. 

1. Introduction 

In this paper we study the effects produced by weak quenched disorder on the critical 
phenomena in the ferromagnetic spin systems near the phase @ansition point. According to 
the usual fluctuation theory of the second-order phase transitions the leading singularities of 
the thermodynamical functions near the critical temperature T, are fuIly described in terms 
of the set of universal critical exponents [2]. The only relevant spatial scale in the critical 
region is the correlation length R, which scales as - r-” , where 5 E (T/T,  - 1) << 1 is 
the reduced temperature parameter and U is the correlation length critical exponent. 

According to the traditional point of view worked out many years ago [3-S], the effect 
produced by weak disorder on the critical behaviour remains negligible so long as the 
correlation length R, is not too large, i.e. for temperatures T not too close to T,. However, 
in the close vicinity of the critical point, where the effective strength of the disorder measured 
with respect to the correlation Iength becomes non-small, one has no grounds, in general, 
for believing that the effect of the disorder will be small. According to the so-called Harris 
criterion [3], weak quenched disorder strongly affects the critical behaviour only if e, the 
specific heat exponent of the pure system, is positive (i.e. the specific heat of the pure 
system is divergent at the critical point). In this case a new universal critical behaviour, 
with new critical exponents, is established sufficiently close to the phase transition point 
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for r << r, =U’/‘ 14, 51. In ConIrast, when o( c 0 (the specific heat is finite), the disorder 
appears to be irrelevant for the critical behaviour. 

Let us consider the usual D-dimensional scalar field Ginsburg-Landau Hamiltonian with 
a double-well potential: 

V Dotsenb and D E Feldman 

H = / dDx [;(V$(x))’ + itr - Wx)I$*(x) -!- &4(x)]. (1.1) 

Here r = (TjT‘ - 1) << 1, and quenched disorder is introduced by random fluctuations of 
the effective transition temperature Jr(.r). The probability distribution for &(x) is taken to 
be symmeaic and Gaussian: 

P[6r] = poexp(-& /dDx (8r(x))’) (1.2) 

where U << 1 is the small parameter which describes the strength of the disorder, and po is 
the normalization constant. 

In general terms, to derive the critical properties of such a system, one has to integrate 
over all local field configurations up to the scale of the correlation length. This type of 
calculation is usually performed using a renormalization group (RG) scheme, which self- 
consistently takes into account all the fluctuations of the field on length scales up to Re 
In actual calculations the traditional results for the critical properties of the system under 
consideration are obtained in terms of the standard RG procedure developed for dimensions 
D = 4 - E ,  where E < 1. Then one finds that in the presence of the quenched disorder the 
pure system fixed point becomes unstable, and the RG rescaling trajectories arrive at another 
(universal) fixed point g, # 0; U* # 0, which yields the new critical exponents describing 
the critical properties of the system with disorder. 

However, there exists an important point which is missing in the traditional approach. 
Consider the ground-state properties of the system described by the Hamiltonian (1.1). 
Configurations of the fields $(I) which correspond to local minima in H satisfy the saddle- 
point equation 

- A&J(x) + (7 - S Z ( X ) ) & J ( X )  + g&J3(x) = 0. (1.3) 

Clearly, the solutions of these equations depend on a particular configuration of the function 
& ( x )  being inhomogeneous. In such solutions the non-zero values of $ ( x )  exist in regions 
of space where (r-Jr(x)) < 0. Moreover, one finds a macroscopic number of local minima 
solutions of the saddle-point equation (1.3). Indeed, for a given realization of the random 
function & ( x )  there exists a macroscopic number of spatial ‘islands’ where (t - 6r(x)) is 
negative (so that the local effective temperature is below Tc), and in each of these ‘islands’ 
one finds two local minimum configurations of the field one which is ‘up’, and another 
which is ‘down’. These local minimal energy configurations are separated by finite energy 
barriers, whose heights become larger as the size of the ‘islands’ is increased. 

The problem is that the traditional RG approach is only a perturbative theory in which one 
integrates over the deviations of the field around the ground-state configuration, and it cannot 
take into account other local minimum configurations which are ‘beyond barriers’. This 
problem does not arise in the pure systems, where the solution of the saddle-point equation 
is unique. However, in the presence of quenched disorder, when one gets numerous local 
minimum configurations separated by finite barriers, the direct application of the traditional 
RG scheme may be questioned. In this situation a systematic approach must consist of 
both integration (in an RG way) over fluctuations around the local minima configurations, 
and summation over all these local minima. In view of the fact that the local minima 
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configurations are defined by the random quenched function & ( x )  in an essentially non- 
local way, the possibility of implementing successfully such a systematic approach seems 
rather hopeless. 

On the other hand there exists another technique which has been developed specifically 
for dealing with systems which exhibit numerous local minima states. It is the Parisi replica 
symmetry breaking (RSB) scheme which has proved to be crucial in the mean-field theory 
of spin glasses (see e.g. [6]). Recent studies show that in certain cases the RSB approach 
can also be generalized for situations where one has to deal with fluctuations as well [7-91. 
Moreover, recently it has been shown that the RSB technique can be successfully applied 
for the RG studies of the critical phenomena in the sineGordon model wh&e remarkable 
instability of the RG flows with respect to the RSB modes has been discovered [lo]. 

In [l] qualitative arguments were presented showing that the summation over multiple 
local minima configurations in the p-component spin system could provide additional non- 
trivial RSB interaction potentials for the fluctuating fields [l]. The idea was that hopefully 
after summation over these discrete degrees of freedom the critical phenomena could then 
be studied in terms of the usual RG scheme for the fluctuating fields with modified effective 
interaction potentials. It is believed that this type of generalized RG scheme self-consist-hy 
takes into account relevant degrees of freedom coming from the numerous local minima. In 
particular, the instability of the traditional replica symmetric (RS) k e d  points with respect 
to the RSB would indicate that the multiplicity of the local minima can be relevant for the 
critical properties in the fluctuation region. In [l] due to several simplifying assumptions, the 
effective 44 interaction potentials have been calculated explicitly, and it was demonstrated 
that the structure of replica interactions belongs to the so-called one-step RSB class. It was 
also shown that, whenever the disorder is relevant for the critical behaviour (for the number 
of spin components p < 4). the usual RS fixed points (which are usually considered as 
describing the disorder-induced universal critical behaviour) are unstable with respect to 
‘turning on’ the RSB potential, and a new type of stable one-step RSB fixed point has been 
discovered. These results made it possible to calculate the corresponding critical exponents, 
which (unlike the traditional RS situation) appeared to be non-universal, being dependent 
on the concrete statistical properties of the disorder. 

The important point, however, is that the non-trivial fixed points obtained in [ l ]  can be 
shown to be stable only within the one-step RSB subspace, being unstable with respect to 
continuous RSB modes. Until it is certain that the starting 44 potentials have strictly onestep 
RSB structure, this type of instability is not important (just like the instability with respect 
to the RSB is irrelevant until the starting 5i54 interactions are strictly RS). However, at the 
present stage one cannot be sure that considered systems are indeed adequately described 
by the one-step RSB ansa-. Moreover, according to [l], in the most interesting Ising case 
( p  = 1) there exist no stable fixed points within one-step RSB subspace at all. 

In this paper we are going to study the critical properties of weakly disordered p- 
component systems (including the p = 1 case) along the same lines as the generalized RG 
approach taking into account the possibility of a general type of the RSB potentials for the 
fluctuating fields. It will be shown in section 2 that in this case the RG flows does not arrive 
at any fixed point, and instead they actually lead to the strong-coupling regime at the finite 
spatial scale R. - exp(l/u) (which corresponds to the temperature scale r, - exp(-l/u)). 
For this scale the structure of the renormalized interactions develops seong RSB, and the 
values of the corresponding interaction parameters are getting non-small. 

Usually the strong-coupling asymptotics of RG flows indicate that certain essentially non- 
perturbative excitations have to be taken into account. Presumably, in the present model 
these are due to exponentially rare ‘instantons’ in the spatial regions, where the value of 
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Sr(x) - 1, and correspondingly the local values of the field &), must be - &I. (A 
distant analogue of this situation exists in the two-dimensional Heisenberg model where the 
Poliakov renormalization develops into the strong-coupling regime at a finite (exponentially 
large) scale which is known to be due to the nonlinear localized instanton solutions [12].) 

In section 3 we derive the physical consequences of the obtained RG solutions for 
observable quantities. In particular we show that due to the absence of fixed points at 
the disorder dominated scales R >> U-'/" (or at the corresponding temperature scales 
r << ul'") there must be no simple scaling behaviour of the physical quantities. Besides, 
we demonstrate that the replica smcture of the SG-type two-point correlation functions is 
characterized by the strong RSB. 

In section 4 we consider the special case of systems with the number of spin components 
p = 4, in which the pure system specific heat critical exponent 01 = 0. Here the disorder 
appears to be marginally irrelevant in a sense that it does not change the critical exponents. 
Nevertheless, the critical behaviour itself (described in terms of the logarithmic singularities) 
is effected by the disorder, and moreover, the RSB phenomena is demonstrated to be relevant 
in this case as well. 

Finally, in section 5 we discuss possible physical interpretations of the obtained results. 
In particular, we speculate that the explicit RSB structure of the SGtype two-point correlation 
functions could be interpreted as indicating the onset of a new type of critical behaviour of 
SG nature. We also briefly discuss the possible relevance of the considered RSB phenomena 
for the Griffith phase which is known to exist in a finite temperature interval near T, [13]. 

V Dotsenb and D E Feldman 

2. RSB in the renormaht ion  group theory 

We consider the p-component ferromagnet with quenched random effective temperature 
fluctuations, which near the transition point can be described by the usual Ginzburg-Landau 
Hamiltonian 

(2.1) 
where the quenched random temperature 8 r ( x )  is described by the Gaussian distribution 
(1.2). 

To carry out the appropriate average over quenched disorder we can use the standard 
replica approach, in which one averages the nth (n + 0) power of the partition function, 
2, = z.[srl, where (. . .) denotes the averaging over Sr(x) with the probability distribution 
(1.2). Simple integration yields 

- 

where 

gob = &!dab - U . . (2.3) 

To study the critical properties of this system we use the standard RG procedure 
developed for dimensions D = 4 - E ,  where E < 1. Along the lines of the usual rescaling 
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scheme (see e.g. [2]) one easily gets the following (one-loop) RG equations for the interaction 
parameters gab: 

where 
arbitrary structure of the interaction matrix gub, and not only for the RS type (2.3). 

be positively defined), and introducing 2 go,, we get the following RG equations: 

is the standard rescaling parameter. Note that the above equations are valid for 

Changing gob -+ 8iiz&b, and g,#b + -go#, (so that the off-diagonal elements would 

If one takes the matrix gob to be RS, as in the starting form of equation (2.3), then 
one would recover the usual RG equations for the parameters g and U, and eventually one 
would obtain the well known results for the fixed points and the critical exponents [4. 51. 
Here we leave apart the question as to how perturbations out of the RS subspace could arise 
(see discussion in [l]) and formally consider the RG equations (2.5), (2.6) assuming that the 
matrix gab has a general Parisi RSB stmcture. 

According to the standard technique of the Parisi RSB algebra (see e.g. [6]), in the 
limit n + 0 the matrix gob is parametrized in terms of its diagonal elements j and the 
off-diagonal function g(x) defined in the interval 0 c x c 1. All the operations with the 
matrices in this algebra can be performed according to the following simple rules (see e.g. 
[7, 141): 

d b  (gki g k ( x ) )  (2.7) 

where 

c = g  - - 11dxg2(x )  

41) =2( i  - Jd'dyglV))g(x) - L'dy[&) -gcV)Iz. 

The RS situation corresponds to the case g ( x )  =tonstant, independent of x 
Using the above rules from (2.5) and (2.6) one gets 

(2.9) 

1 d 
-&) = ( E -  (4 + 2~)5)g(x)  + 4g2(x) - 2pg(x )  l dy g(y) - p 
d t  0 

d -  
d.5 
where 2 = Jd dx g?(x) .  

Usually in the studies of the critical behaviour one is looking for the stable fixed- 
point solutions of the RG equations. From equation (2.10) one can easily find out what the 

dy k(x )  - g(y))2 

(2.10) 

(2.1 1) -g = € j  - (8 + p)iZ + p 2  
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structure of the function g(x )  at the fixed point, &(x) = 0, -&g = 0 should be. Taking the 
derivative over x twice, one gets, from equation (2.10), g'(x) = 0. This means that either 
the function g(x)  is constant (which is the RS situation), or it has a step-like structure. It is 
interesting to note that the structure of fixed-point equations is similar to that for the Parisi 
function q ( x )  near T, in the Potts spin glasses [15], and it is the term g2(x)  in equation (2.10) 
which is known to produce the one-step RSB solution there. The numerical solution of the 
above RG equations convincingly demonstrates that whenever the trial function g(x )  has the 
many-step RSB structure, it quickly develops into the one-step one with the coordinate of 
the step being the most right step of the original many-step function. 

In [I] the following one-step RSB ansatz for the function g(x )  has been considered 

V Dotsenko and D E Feldman 

(2.12) 

where 0 < xo < 1 is the coordinate of the step. 
In terms of this ansatz the above fixed-point equations have several non-trivial solutions. 
(i) The RS fixed point which corresponds to the pure system: 

1 
8 + go=g1=0 g = -  (2.13) 

This fixed point (in accordance with the Harris criterion) is stable for the number of spin 
components p > 4,  and becomes unstable for p < 4. 

(ii) The disorder-induced RS fixed point (for p 1 )  14, 51: 

(2.14) 

It was usually considered to be the solution which describes the new universal critical 
behaviour in systems with impurities. This fixed point has been shown to be stable (with 
respect to the RS deviations!) for p < 4, which is consistent with the Hanis criterion. (For 
p = 1 this fixed point involves an expansion in powers of (e)'D and this structure is only 
revealed within a two-loop approximation.) However, the stability analysis with respect to 
the RSB deviations shows that this fixed point is always unstable [ l ] .  Therefore, whenever 
the disorder is relevant for the critical behaviour, the RSB perturbations must be becoming 
the dominant factor in the asymptotic large-scale limit. 

(iii) The one-step RSB fixed point [I]: 

This fixed point can be shown to be stable (within the one-step RSB subspace!) for 

(2.16) 

32 In particular, x , (p  = 2) = $; x,(p = 3 )  = 3, and x , ( p  = 4 )  = 1 .  Using the result (2.15) 
one can easily obtain the corresponding critical exponents which become non-universal, 
being dependent on the sming  parameter xo. In particular, for the critical exponents of the 
correlation length and the specific heat one finds [I] 

(2.17) 

(2.18) 
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Unfortunately, to obtain the first correction to the~critical exponent q of the two- 
point correlation function one has to study the RG fixed points in the next order (-6’) 
approximation. Technically such types of calculations are much more cumbersome and the 
result for the critical exponent q still remains to be found. 

The problem, however, is that if the parameter xo of the starting function g(x; $ = 0) 
(or, more generally, the coordinate of the most right step of the many-step starting function) 
is beyond the ‘stability interval’, (2.16). such that xc(p) e xo e 1, then there exist no stable 
jiredpoinfs of the RG equations (2.10). (2.11). One faces the s h e  situation, of course, in 
the case of a general continuous starting function g(x; 5 = 0). Moreover, according to 
(2.16) there exist no stable fixed points out of the RS subspace in the most interesting Ising 
case, p = 1. 

It should be stressed that unlike the RS situation for p = 1, where one finds the stable 
-fi fixed point in the two-loop RG equations [5], here adding next-order terms in the 
RG equations does not cure the problem. In the considered RSB case one finds that in the 
two-loop RG equations the values of the parameters in the fixed point are formally becoming 
of the order of one, and it signals that we are entering the strong-coupling regime where all 
the orders of the RG become relevant. 

Nevertheless, to get at least some information about the physics behind this instability 
phenomena, one can proceed by analysing the actual evolution of the above one-loop RG 
equations. The scale evolution of the parameters of the Hamiltonian would still adequately 
describe the properties of the system until we reach a critical scale :*, at which the strong- 
coupling regime begins. 

The evolution of the renormalized function g(x; e )  can be analysed both numerically 
and analytically. It can be shown (see appendix A) that in the case p e 4 for a general 
continuous starting function g ( x ;  go(x) the renormalized function g(x; 5 )  tends to 
zero everywhere in the interval 0 < x < (1 -A(:)), while in the narrow (scale-dependent) 
interval A(() near x = 1 the values of the function g(x; 6 )  grow: 

= 0) 

1 g(:) - u In - 
1 - U: 

(2.19) 

(2.20) 

where 

A(:) (1 - u t ) .  (2.21) 

Here a is a positive non-universal constant, and the critical scale :* is defined by the 
condition that the values of the renormalized parameters become of the order of one: 
(1 - U&) - U, or 6% - l / u .  Correspondingly, the spatial scale at which the system is 
entering the strong-coupling regime is 

R.  - exp( t) 
Note that the value of this scale is much bigger than the usual crossover scale - u-=fY (where 
(Y and v are the pure system specific heat and the correlation length critical exponents), at 
which the disorder becomes relevant for the critical behaviour. 

According to the above result, the value of the narrow band near x = 1 where the 
function g(x;  6 )  formally becomes divergent is A($) Y (1 - U:) --f U << 1 as 5 --f (*. 
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Besides, it can also be shown (appendix A) that the vaiue of the integral - 
g(p) 1; g(x; f )  formally becomes divergent logarithmically as e + b: 

(2.23) 

Qualitatively similar asymptotic behaviour for g(x;  c) is obtained for the case when the 
starting function go(x) has the one-step RSB structure (2.12), and the coordinate of the step 
xo is in the ‘instability region’ (or for any xo in the Ising case p = 1): 

at 0 4 x < xo. 

Here gl(0) g, (5 = 0) - U, and the coefficient (4 - 2 p  + pxo) is always positive. In this 
case again, the system arrives at the strong-coupling regime at scales 6 - l /u .  

Note that the above asymptotics do not explicitly involve E .  Actually, the role of the 
parameter E > 0 is to ‘push’ the RG trajectories out of the trivial Gaussian fixed point 
g = 0; 2 = 0. Thus, the value of E ,  as ,well as the values of the starting parameters go(x), 
20, define a scale at which the solutions finally anive at the above asymptotic regime. In 
the case e < 0 (above four dimensions) the Gaussian fixed point is stable; on the other 
hand, the strong-coupling asymptotics still exists in this case as well, separated from the 
trivial asymptotics by a finite (depending on the value of E )  barrier. Therefore, although 
infinitely small disorder remains irrelevant for the critical behaviour above four dimensions, 
if the disorder is strong enough (bigger than a certain value dependent on the E threshold) 
the RG trajectories could arrive again at the above strong-coupling regime. 

3. Scaling and correlation functions 

3.1. Temperature scales 

The renormalization of the mass term s(F)  x:=, & is described by the following RG 
equation: 

Changing (as in the previous section) gab + 8irzg,,b, and &+b + -gn+b, in the Parisi 
representation we get 

01 

1 
r ( t )  = roexp( 2t  - 1 dtl[(z+ p)2(tl) + pZ( i l ) l }  (3.3) 

where i ( q )  and r(q) = jd d x g ( x ;  1) are the solutions of the RG equations (2.10), (2.11). 
Consider first what is going on in the traditional RS situation. The RS interaction 

parameters i(c) and g o )  anive at the fixed point (&,gm) (2.14), and then for the 
dependence of the renormalized mass ~ ( f ) ,  according to (3.3), one gets 

~(t) = roexp(&81 (3.4) 
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where 

AT = 2 - [U + P)& + Pgd - (3.5) 
At scale tc, such that r( tC)  - 1, the system geti out of the scaling region. Since the RG 
parameter t = In R ,  where R is the spatial scale, according to (3.4) one finds the correlation 
length R, as a function of the reduced temperature ro 

R&o) - t;" (3.6) 
where U = 1 . /Ar. 

Actually, if the starting value of the disorder parameter g(.$ = 0) 5 U is much smaller 
than the value of the pure system interaction ij($ = 0)  go, the situation is somewhat more 
complicated. In this case the RG flow  for ij(t) first arrives at the pure system fixed point 
&=,, as if the disorder perturbation does not exist. Then, since the pure system fixed point 
is unstable with respect to the disorder perturbations, at scales bigger than a certain disorder 
dependent scale ex, the RG trajectories eventually anive at the disorder-induced fixed point 
(&, grJ. According to the traditional theory [4], tu - :In i, and the corresponding spatial 

Coming back to the scaling behaviour of the mass parameter tQ), equation (3.4). we 
see that if the value of the temperature ro is such that r ( t )  becomes of the order of one 
before the crossover scale tx is reached, then for the scaling behaviour of the correlation 
length one finds essentially the pure system result R,(ro) - to @ '. Thus, the pure system 
critical behaviour is observed only for temperatures not too close to T,: r, << TO << 1. 

On the other hand, if sa << r,, the RG trajectories for @(e) and g(6) finally arrive 
(after crossover) at the new universal disorder-induced fixed point (&, grJ. In this case 
scaling behaviour of the correlation length, becomes controlled by the new universal critical 
exponent U defined by the fixed point (&, grs) of the random system. 

Consider now what happens if the RSB RG scenario takes place. For the same reasons as 
discussed above, if the disorder parameter U is small, the critical behaviour in the temperature 
interval r, << ro << 1 is essentially controlled by the pure system fixed point, and the 
presence of disorder is irrelevant. 

However, at temperatures r~ << r* the  situation^ becomes completely different kom the 
RS case. According to the solutions (2.19), (2.24), at scales << e < t* - { the parameters 
j ( t )  and g ( x ;  5 )  do not +ve at any fixed point. Therefore, according to equation (3.3), 
the correlation length becomes defined by the following non-trivial equation: 

scale is R,  - u-"'~ >> 1.- 

-" "x 

1 ID R, 
21n Rc - dv[V + ~ ) i j ( v )  + pZ(v)l = In ;. (3.7) 

Thus, as the temperature becomes sufficiently close to T, (in the disorder-dominated region 
ro << ru) there will be no usual scaling behaviour of the correlation 1en-d. 

Finally, as the temperature parameter ro becomes smaller and smaller, at the scale 
& s In R, - { the system enters the strong-coupling regime. Here the interaction 
parameters j ( t )  and g(x ;  t) become non-small, while the renormalized mass r(:) still 
remains small. According to the solution obtained in appendix A, the integrals J,'. dq g ( q )  
and /," dqTj(0) have finite (depending on the initial conditions) values. Thus, according to 
equation (3.7), for the crossover temperature we get 

In the close vicinity of T,, at t << &, we face the situation that at large scales the 
interaction parameters of the asymptotic (zero-mass) Hamiltonian become non-small, and 
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the properties of the system cannot be analysed in terms of a simple one-loop RG approach. 
Note, however, that it is the parameter describing the disorder, g(x; e ) ,  which is the most 
divergent. Therefore, the qualitative smcture of the asymptotic Hamiltonian makes it 
possible to speculate that in the temperature interval t << r* near T, the critical properties 
of the system should be essentially SG-like (see discussion in section 5). 
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3.2. Specific heat 

According to the standard procedure the leading singularity of the specific heat can be 
calculated as follows: 

(3.10) 

(3.11) 

where Go(R) = R-'D-z) is the free field two-point correlation function, and the mass-like 
object m'(R) is given by the solution of the following (one-loop) RG equation: 

(3.12) 

Here, as usual, t = In R, and the renormalized interaction parameters ?(e) and &?a#&) 

are the solutions of the replica RG equations (2.5), (2.6). In the Parisi representation, 

Then, after simple transformations for the singular part of the specific heat, equation (3.9), 
one obtains: 

1 where Z(q) so dxg(x; q) .  The infrared cut-off .$,,,mar in (3.14) is the scale at which the 
system gets out of the scaling regime, and if the traditional scaling situation takes place, 
one finds that - In(l/to). 

One can easily check that using equation (3.14) for the RS and one-step RSB fixed 
points, equations (2.14) and (2.15), the usual scaling for the specific heat C(r)  - t-' 
can be recovered, and known results (in particular, equation (2.18)) for the corresponding 
critical exponents can be obtained. 

However, if the considered problem is characterized by the RSB of a general type the 
situation becomes completely different. According to the RG strong-coupling asymptotic 
solution (2.20), (2.23), in the disorder-dominated region r, << ro (< u"Iu (which corresponds 
to scales tu << t << t*) the RG trajectories for the interaction parameters g ( t )  and z(<) do 
not arrive at any fixed point, and according to equation (3.14) one finds that the specific 
heat becomes a complicated function of the temperature parheter so. Thus, in this case in 
the disorder-dominated critical region the temperature dependence of the specific heat does 
not have the traditional scaling form. 
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Moreover, in the ‘sc-like’ temperature interval in the close vicinity of T,, where the 
renormalized interaction parameters j and become non-small, one finds that the integrals 
over t in equation (3.14) become convergent. It means that the temperature-dependent 
upper cut-off scale tmax becomes irrelevant. Thus, one finds that the ‘would be singular 
part’ of the specific heat is ‘smoothed out’ in the temperature interval -r, around T,. In 
other words, the specific heat becomes non-singular at the phase transition point. 

3.3. Correlation functions 

As noted in section 2, the calculations of the critical behaviour of the usual two-point 
correlation function involve a next-order (two-loop) approximation of the RG analysis. In 
the framework of the present RSB scheme such types of calculations appear to be extremely 
cumbersome, and have not yet been done. On the other hand, the scaling properties of the 
so-called spin-glass-type connected correlation function 

(3.15) 
can be calculated within the usual one-loop approximation, and it is the properties of such 
a type of correlation function that are of main interest for the considered spin-glass effects 
in the critical phenomena (see section 5). 

It is well known [6] that in terms of the replica formalism the correlation function (3.15) 
can be represented as follows: 

K ( R )  = ((@(O)@(R)) - (@(O))(WO)) ’  = ((@(0)4(R)))Z 

(3.16) 

where 
Knb(R) = ( (@~(o)@b(o)@~(R)@~(R)) ) .  (3.17) 

It is also well known that in terms of the standard RG formalism for the scaling behaviour 

Kob(R) - (Go(R) ) ’ (Zab (R) ) *  (3.18) 

Go(R) = R- (D-2) (3.19) 
is the freefield correlation function, and in the one-loop approximation the scaling of the 
mass-like object Zob(R) (with a # b)  is defined by the following RG equation: 

of the above replica correlation function one finds 

where 

(3.20) 

Here g+&) > 0 is the solution of the corresponding RG equations (2.5), (2.6), t = lnR, 

d 
- h Z a b ( t )  =%ob( t ) .  
de  

and &(o) 1. 
Thus, for the correlation function (3.18) one finds 

~ ~ b ( ~ ) - ( ~ 0 ( R ) ) ’ e X P ( 4 ~ ~ d t g ~ b ( t ) } .  (3.21) 

Correspondingly, in the Parisi representation: ga&) + g(x;  t )  and K.#b(R) -+ K ( x ;  R), 
one gets 

(3.22) 
. 

Consider separately the results for the above correlation function given by the haditional 
RS fixed point, the one-step RSB fixed point and the strong-coupling asymptotics. 
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3.3.1. Repl ica-symmetr ic fd  point. 
go&) 
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In the traditional Rs case the interaction parameter 
u(F) arrives at the fixed point 

and according to equations (3.21), (3.16) one obtains simple scaling 

K,(R) - R-W-~)+B~S 

with the universal disorder-induced critical exponent 

4 - P  
4(P - 1) 

e, = E 

(3.23) 

(3.24) 

3.3.2. One-step RSBfiedpoint In the case O f  the onestep RSB fixed point, equation (2.15). 
the situation becomes somewhat more complicated. Here one finds that the correlation 
function K ( x ;  R )  also has one-step RSB stmcture: 

where 

Ko(R)  - R - K D - ~ )  = G;(R) K ~ ( R )  R-~(D-Z)+~W.SB (3.26) 

with the non-universal critical exponent BIRSB explicitly depending on the coordinate of the 
step XO: 

(3.27) 

Since the critical exponent BIRSB is positive, the leading contribution to the asymptotic 
behaviour of the ‘observable’ quantity K ( R )  = ((q5(0)q5(R))j2, equation (3.16), is defined 
only by  the function K I ( R )  

K ( R )  = (3.28) 

Thus, in this case the correlation function K ( R )  decays more slowly than in the RS case 
(3.23), (3.24). 

dr K ( x ;  R )  - (1 - xo)Kl(R)  + xoKo(R) - R-2(D-Z)+slmB . II 
3.3.3. Strong coupling asymptofics. In the case of a general type of RSB, according to the 
qualitative solution (2.19), (2.20), the function g ( x ;  F )  does not anive at any fixed point at 

>> 1 
there must be no scaling behaviour of the correlation function K ( R ) .  Near the critical 
scale f* - l /u  the qualitative behaviour of the solution g(x;  F) is given by equation (2.19). 
Therefore, according to equation (3.22). near the critical scale R. - exp(l/u) for the 
correlation function K ( x ;  R )  one obtains 

K ( x ;  R )  - 
where A ( R )  = (1 - u I n R )  + U < 1 as R + R,. 

scales f >> fu - In i. Therefore, at the disorder-dominated scales R >> R, - 

R-Z(D-2’(1 - uInR)4  K I ( R )  for (1 -x)  << A ( R )  
(3.29) I R-2‘D-*) = G:(R) = KO(R) for (1 - X )  >> A(R)  
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At the critical scale, where (1 - U In R,) - U ,  according to equation (3.29) the shape of 
the replica function K ( x ;  R)  becomes 'quasi-one-step': 

2(D - 2) 
for (1 - x )  << U 

for (1 - x )  >> U .  
(3.30) 

2(D - 2) K ( x ;  R d  - 
Note that although both values K ;  and K t  are exponentially small, their ratio K;/K,*  - 
Finally, at scales R >> R, the system enters the strong-coupling regime, where the 

Physical interpretation of the above results will be discussed in section 5. 

U-" is big. 

simple one-loop RG approach cannot be used any more. 

4. Marginal case p = 4 

In systems with the number of spin components p = 4 (in which the pure system specific 
heat critical exponent 01 = 0) the disorder appears to be marginally irrelevant in a sense that 
it does not change the critical exponents. Nevertheless, the critical behaviour (described in 
terms of the logarithmic singularities) is affected by the disorder, and moreover, the RSB 
phenomena appear to be relevant in this case as well. 

Consider first the RS situation: g(x;  5 )  = g(5). For the RG equations (2.10), (2.1 1) one 
gets 

In the pure system (g 0) the fixed point is 

gpue = A€. (4.2) 

Using equation (3.14) for the singular part of the specific heat of the pure system one easily 
finds 

(4.3) 

Thus, although the .specific-heat critical exponent of the pure system is zero, the specific 
heat is still divergent in the critical point. 

For the system with disorder, the (RS) asymptotic solution of equations (4.1) is 

g(6) = it-' + 0 

q(6) - 6-2' + 0 .  

J ( 6 )  = A€ + 4(5) (4.4) 

(4.5) 

where 

In this case the renormalized parameters asymptotically approach the puresystem fixed 
point = 6/12, g = 0 (so that the disorder is marginally irrelevant). Nevertheless, due to 
slow power-law approach to the fixed point the logarithmic singularity of the specific heat 
changes into another universal type. From the general expression (3.14) for the singular 
part of the specific heat one obtains 

(4.6) 
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Using the result (4.4) one easily finds 
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(4.7) 

One can also easily check that (unlike the systems with p < 4) the crossover from pure 
system critical behaviour, equation (4.3). to disorder induced, equation (4.7). takes place in 
the exponentially small temperature interval near T,: 

zu - exp(-d) (4.8) 

Consider now the effects of the RSB. The analytic solution of the RG equations (2.10). 
(2.11) (see appendix B) shows that there is no strong-coupling regime in the p = 4 case, 
and the asymptotic behaviour (at scales 5 >> 1/10 of the renormalized parameters can be 
found exactly: 

Here y = gL(x = 1) - U is the derivative of the starting RSB function g&) at x = 1. 
As in the RS case the renormalized parameters asymptotically approach the pure system 

fixed point 2 = 6/12, g ( x )  = 0. Nevertheless, the structure of the asymptotic solution for 
the renormalized function g ( x ;  .$) near this fixed point exhibits strong RSB. 

However, the specific heat appears not to be affected by the RSB. According 
to equation (3.14) the leading singularity of the specific heat is defined by the 
integral d x g ( x ;  I )  = g(f)  and not by the function g(x; e)  itself. It can be shown (see 
equation (B.12)) that in the asymptotic regime the value of E(.$) coincides with the RS 
asymptotics (4.4): 

H(8) - I.$-’. (4.11) 

Therefore, for the specific heat singularity one obtains the result coinciding with the RS one, 
equation (4.7). 

On the other hand, the asymptotic behaviour of the correlation functions appears to be 
quite different from the results of the traditional RS solution. In the RS case, equation (4.4), 
according to equation (3.22) for the correlation function 

(4.12) 

one easily finds the following result: 

K(R) - ( G o ( R ) ~ ’ e ~ p ( 4 ~ ~ d 6 g ( I ) }  = (Go(R))’ln R .  (4.13) 

Therefore, in the RS case the disorder provides only the logarithmic correction to the 
correlation function. 

In the case of the RSB solution, equation (4.9), according to equation (3.22) for the 
replica correlation function K ( x ;  R), one easily finds 
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Correspondingly, for the ‘observable’ correlation function, equation (4.12), one eventually 
obtains 

This result is essentially different from the RS~one, equation (4.13). 

5. Discussion 

According to the results obtained in this paper, as well as in [l], spontaneous replica 
symmetry breaking in the effective interaction potential for the fluctuating fields has a 
dramatic effect on the renormalization group flows and on the critical properties. In the 
systems with the number of spin components p < 4 the traditional replica-symmetric RG 
flows at dimensions D = 4 - E ,  which are usually considered as describing the disorder- 
induced universal critical behaviour, appear to be unstable with respect to ‘turning on’ the 
RSB potentials. Moreover, for a general type of the Parisi RSB structures there exist no 
stable fixed points, and the RG flows lead to the strong-coupling regime at the finite scale 
R, - exp(l/u), where U is the small parameter describing the disorder. Unlike the systems 
with 1 < p < 4, where there exist stable fixed points having one-step RSB sh’uctures, 
equation (2.15), in the Ising case, p = 1, there exist no stable fixed points, and any RSB 
interactions lead to the strong-coupling regime. 

The problem now is to understand how all those formal results should be interpreted 
in qualitative terms for the observable physics. The first qualitative result which comes out 
from the calculations of section 3 is that the physical quantities exhibit no scaling behaviour 
in the critical region. Actually, this is just the general consequence of the absence of the 
fixed point in the RG. Although it is the RSB phenomena which provide the absence of the 
fixed point in the considered problem, the non-scaling behaviour itself does not give insight 
into specific effects of the RSB which is the main interest of the present study. 

The key question, which remains unanswered, is whether or not the obtained RSB strong- 
coupling phenomena in the RG flows could be interpreted as the onset of a kind of spin- 
glass phase near I”,. Since it is the RSB interaction parameter describing the disorder, 
g(x; c), which is the most divergent, it is tempting to argue that in the temperature interval 
7 << s. - exp(-l/u) near T, the properties of the system should be essentially SG-like. 

It should be stressed, however, that in the present study we observe only the crossover 
temperature s,, at which the change of the critical regime may occur, and it is hardly 
possible to associate this temperature with any kind of phase transition. Actually, if the 
RSB effects could indeed provide any kind, of true thermodynamic order parameier, then this 
must be true in the whole temperature interval where the RSB potentials exist. 

The true spin-glass order (in the traditional sense) arises from the onset of the non-zero 
order parameter e.&) = { & ( X ) 4 b ( X ) ) ;  a # b, and, at least for the infinite-range spin 
glasses, Q o b  develops hierarchical dependence on replica indices obtained by Parisi [16]. 
In the present problem we find only that the coupling matrix gob for the fluctuating fields 
develops strong RSB structure and its elements become non-small at a finite scale. Therefore, 
it seems more realistic to interpret discovered RSB strong-coupling phenomena in the RG 
just as a new type of ~cntical behaviour characterized by strong SG effects in the scaling 
properties rather then in the ground state. 

In spin glasses it is generally believed that RSB phenomena can be interpreted as a 
factorization of the phase space into an (ultrametric) hierarchy of ‘valleys’, or local minima 
pure states, separated by macroscopic (infinite) barriers @I. Although in the systems 
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considered here the local minima configurations responsible for the RSB are not likely to be 
separated by infinite barriers (otherwise it would mean true SG freezing), it would be natural 
to interpret obtaincd phenomena as effective factorization of the phase space into a hierarchy 
of valleys separated by finite barriers. In this situation one could expect that besides the 
usual critical slowing down (corresponding to the relaxation inside one valley), qualitatively 
much bigger (exponentially large) relaxation times would be required for overcoming 
barriers separating different valleys. Therefore, the traditional measurements (made at finite 
equilibration times) can actually correspond to the equilibration within one valley only, and 
not to the true thermal equilibrium. Then in a close vicinity of the critical point different 
measurements of the critical properties of, e.g., spatial correlation functions (in the same 
sample) would exhibit different results as if the state of the system becomes effectively 
'trapped' in different valleys, and thus the traditional spin-glass situation will be observed. 

In this respect the replica structrrre of the two-point correlation function K.b(R) = 
(&(O)&(O)&(R)&,(R)) (studied in section 3.3) is of fundamental importance. Of course, 
the 'observable' quantity (averaged over the disorder) 
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has no replica structure, and correspondingly, besides its scaling properties, it cannot give 
any direct information about the RSB. Nevertheless, the qualitative difference between the 
traditional RS critical phenomena and those with RSB is not only in the fact that in the case 
of the one-step RSB fixed point the corresponding critical exponent 9 ,  equation (3.27). of 
the correlation function K ( R )  is non-universal, or in the case of the strong-coupling regime 
the function K ( R )  exhibits no scaling. 

According to the traditional SG philosophy [6, 141 the result that the behaviour of the 
replica quantity &(R) depends on the replica indices (a, b) indicates that in different 
measurements of the correlation functions for a a given realization of the disorder one 
has to obtain different results. To describe this phenomenon in more concrete terms, such 
as in spin glasses, it appears to be more convenient to deal with the so-called 'overlap' 
quantities. In our case the spatially averaged overlap quantity, which corresponds to the 
replica correlation function K,b(R), could be defined as follows: . "  

G j  (R) = I dDr(4(r)++(r + R))i($(r)W + W ) j .  (5.2) 

Here i and j label two different realizations of the disorder, and it is assumed (as in spin 
glasses) that the measurable thermal average corresponds to a particular valley in the space 
of states for a given realization of the disorder, and not to the true thermal average. 

Apparently, if the usual RS situation takes place (so that only one global valley exists), 
then for the correlation function Kjj (R) one will obtain the same result K(R) ,  equation (S.l), 
in, all measurements for any pair of realizations of the disorder. However, in the case of 
the RSB solution, the situation becomes qualitatively different. The point is that if the phase 
space is factorized into a multiple valley structure (and each thermal average corresponds 
to one valley only), then the correlation function (5.2), although being spatially averaged, 
becomes aprobabilistic quantity, and according to the SG theory of the RSB, the fluctuations 
of K i j ( R )  are described by the distribution function, which is defined by the RSB structure 
of the replica quantity K,b(R). 

In particular, if the onestep RSB result (3.25) takes place, then for the correlation 
function K j j ( R )  one has to obtain the values &(R) and Kt(R), with the probabilities 
xo and (1 - xo) correspondingly. Similarly, in the case of the non-scaling result (3.29). 

V 
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which also exhibits quasi-one-step RSB asymptotic structure, the probabilities of obtaining 
the values Ko(R) and K I ( R )  must be (1 - A(R))  and A(R) correspondingly. 

The other unsolved problem is about ‘the possible relevance of the RSB phenomena 
considered here and in [ l ]  for the so-called Griffith phase [13]. 

Apparently, if the summation over multiple local minima configurations yields the 
effective Hamiltonian with the RSB in the fourth-order potential, then formally one is 
dealing with a phase exhibiting a different symmetry than the conventional RS paramagnetic 
phase. Thus there would have to be a temperature TRSB at which this change in symmetry 
occurs, since for large enough T there must be no RSB. Although in the present study we 
were concentrated on the effects of the RSB for the fluctuating fields and for the critical 
phenomena, it should be stressed that it is the statistics of the saddle-point solutions only, 
which is responsible for the appearance of the RsB. Therefore, one can consider the separate 
problem of summing over saddlepoint solutions without fluctuating fields, keeping arbitrary 
parameter T, and aiming to find a finite value of TRSB at which the RSB solution for this 
problem disappears. 

Of course, in general this problem is very difficult to solve, but one can easily obtain 
an estimate for the value of T W ~  (assuming that at 5 = 0 the RSB situation takes place). 
According to the qualitative study of this problem in [l], the RSB solution can occur only 
when the effective interactions between the ’islands’, where the system is effectively below 
T,, become non-small. The islands are the regions where S T ( X )  > T. According to the 
Gaussian distribution for S T ( X ) ,  the average distance between them must be of the order 
of exp[-~’/u], so that the islands become distant at T z 4. The interaction between the 
islands is exponentially small in their separation. Therefore at T > f i  they must become 
weakly interacting, and there must be no RSB. 

Note now that the shift of T, with respect to the corresponding pure system is also of the 
order of fi. On the other hand, it is the presence of multiple local minima configurations 
which is believed to be the fundamental reason for the existence of the Griffith phase 1131 
which is claimed to be observed in the temperature interval between Tc of the disordered 
system and Tc of the corresponding pure system. On these grounds it is tempting to 
associate the (hypothetical) RSB transition in the statistics of the saddlepoint solutions with 
the Griffith transition. Comespondingly, it would also be natural to suggest that discovered 
RSB phenomena in the scaling properties of weakly disordered systems could be associated 
with the Griffith effects. 
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Appendix A. The asymptotic solution for the p < 4 case 

In this appendix we derive the asymptotic solution of the RG equations (2.10), (2.1 1): 

d 1 

--sW = (6  - (4 + ~P)&(x)  + 4g’W - 2 p g W  1 dy g ( y )  - P r d y  (g(X) - g(y))’ d5 0 

(A.1) 
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(where 2 = 1; dx g2(x) )  for the number of components p -= 4. 

irrelevant in the asymptotic regime. So, consider the equation 
It can be shown a posteriori that the term ( E  - (4 + 2 p ) j ) g ( x )  in equation (A.l) is 

After takng the derivative over x and after simple transformations one gets 

where A = 4/p > 1. Let us introduce 

According to this definition one has 
1 

1 - x  g'(x) = -- V'(X) 

Here for simplicity we consider the case g(x = 0) = 0 (the behaviour of the solution for 
g(x,= 0) # 0 in the asymptotic regime can be shown to be qualitatively the same). 

Then, for equation (A.4) after simple transformations we get 

or 
1 - x  
A - x  

V'(x) = - W'(x) . 
From equation (A.7) one gets 

Integrating over x yields 
d 

-W(x) = -pWZ(x) -2pw(x)g($) (A.ll) 
de 

(here the integration constant is zero because W(x = 0) = 0). This equation can be easily 
solved for any given function g(5): 
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where 

Wo(X) W ( X ;  c 0) - dy (A - y)gb(y) (A.13) 

g(x; 6 = 0). Coming back through the definitions (A.8) and (AS) €or the 
6': 

and g&) 
functian g(x; 6 )  one gets 

Now the problem is to find the asymptotic behaviour of A h ) ,  
Let us introduce 

1 
G(C) = I  d t l i W .  ' 

0 

Integrating (A.16) we obtain 

where 

Let us redefine 

Then 

(A.16) 

(A.17) 

(A.18) 

(A.19) 

(A.20) 

Now, let us redefine again 

(A.22) 

(A.24) 
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or 
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where 

(A.26) 

For @(.$) << 1 the leading contribution in the integral in (A.25) comes from the vicinity 
of y = 1. Assuming that g;I(y = 1) = y # 0, this contribution can be estimated as follows: 

(1 - YkA(Y) I 

dy 
P dz (A - z)gb(z) . 

such that, as @ + 0, the value of G(5) goes to finite value G,, but near this point the 
behaviour of this function is non-analytic. 

Now let us assume that there exists a certain scale &, such that $(t -+ 5;) + 0, and 
consider the behaviour near &. Coming back to the definition (A.20) we can estimate 

-1 
W) = [ l ' d v  exp(--2pG(v)) 1-1 ~~ 

'c cc 

= (l dv exp(-2pG(v)) - \ dvexp(-2pG(il))) 
t 

Comparing this result with (A.22). we find that 

@E) =a(& - ') 
where the parameters tc and a are defined by 

I 1 
/6" dv exp(-2pG(v)) 

= P l dy (A - y)gh(y) 

and 

(A.28) 

(A.29) 

(A.30) 

Let us estimate the parameters FC and a by the order of magnitude. The characteristic 
value of the initial function go(x) is of the order of U << 1, which is the characteristic value 
of the quenched disorder. If the initial function g&) does not have a special anomaly near 
x = 1, then its derivative y must also be of the order of U. Then, the above integrals can 
be estimated as follows: 

(A.32) 
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(A.33) 

(A.34) 

Thus. from (A.30) and (A.31) for the parameters Ec and a we find 

(A.35) 

(A.36) 

Now we can describe the qualitative behaviour of the asymptotic solution. According 

1 
t c  - - 
a - U  . 

U 
2 

to (A.27) 

U -a- 
1 - u t  

(A.40) 

where U - 1 is a (non-universal) constant. 

(1 - u t )  - U (until the value of the parameter g, becomes non-small). 
Therefore, the considered RG approach can be applied only up to the scales such that 
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Now let us come back to the equation for the diagonal parameter 5 (A.2). According 
to the asymptotics obtained above we can estimate the value of 2. Since the leading 
contribution comes from the region A(p) near x = 1, we get 

Therefore, from equation (A.2) we see that 2 diverges as the logarithm 
1 i(f) - u In - 

1 - u c  

(A.41) 

(A.42) 

Thus, in the region near x = 1 where the value of g(x: p) was obtained to be of the order 
of u / ( l  -U() the first term ( E  - (4f 2p)g )g (x )  in equation (A.l) is much smaller than the 
other terms: 

U2 1 U 2  

1 - u f  1 - u f  (1 -u f )Z  
i g ( x )  - - In - << - g2W (A.43) 

Of course, the above asymptotic solution does not make it possible to obtain the 
behaviour of the function g(x; f )  in the whole interval [ O , l ]  for all I. Nevertheless, 
the numerical solution of the general RG equations (A.]), (A.2) clearly demonstrates that 
at large scales the function g(x; 6 )  quickly goes to zero for all x not too close to 1, while 
in the narrow region near x = 1 the values of this function become divergent. Thus, the 
behaviour of the asymptotic solution for g(x; 5 )  in the vicinity of the critical scale fc could 
be qualitatively represented as follows: 

. .  
for (1 - x) >> A(:) 

where A(f) = (1 - u t )  + U << 1 as 5 + f c ,  and a is a positive non-universal constant. 
The obtained asymptotics can also be easily generalized for the situation when g(x = 

0) # 0. One has to Write g ( x ;  t )  = (the obtained solution) +g(x = 0; f ) ,  then put it into 
the equation, obtain the equation for g(x = 0 E), and find the asymptotics for g(x = 0; f )  
It is straightforward to check that qualitatively it does not change the above results. 

Appendix B. The asymptotic solution for p = 4 

In the p = 4 case the asymptotic solution of the equations (2.10), (2.11) can be obtained 
as follows. 

Redefining the diagonal parameter %(e) 
E 

i(t) = + q(5') 

we get 

-&) = -12q(f)g(x) +4g2Q) - ~ 8 g ( x )  1 dyg(y) - 4 S l d y  ( g ( x )  - g(y))* 
de 0 

df 

I d 

d -q(t) = - E q  - 12qZf42 .  

Then, proceeding as in appendix A, instead of equation (A.7) we obtain 
d 

-V'(x; f )  = -PV'(x; f)V(x; e )  - 12V'(x; t )q(f) .  
d6 
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Integration over x yields 
d 

- -v(x;  5 )  = -4V2(x; 5 )  - l%O)V(x; 0 
d l  

(B.5) 

0). The solution of this equation for (the integration constant is zero, since V(x = 1) 
any given function 4 0 )  is 

where V&) 

g ( x ;  5 )  = 1'dygf(y)  + g(x = 0 e )  = - 

V(x; e = 0) = i,'dy (1 - y)g&). 
Coming back to the function g(x;  5 )  we get 

x 1  
dy -V'(y) + g(x = 0 e ) .  (B.7) 1 1 - Y  

Using equation (B.6) we find 

(B.8) 
Putting this result back into the original equation (B.2) we get the equation for g(x = 0; e) 
-g(x = 0 6) = - IZq( t )g(x  = 0; 5 )  - 4gyx = 0; 5 )  - 8 g ( x  = 0; e)g(c) (B.9) 
d5 
where 
- gb(y) exp{-12.J,' dt1drl)l 
go) = 1' &t 1' dy 

d 

(B.lO) 

Let us assume now that the parameter 40) decays as - 5-' with s > 1. Then the inte,.ral 
1' d q q ( q )  converges at large e, and for the exponent in (8.8) we find that it is equal to a 
constant of the order of one: exp{-121: dqq(7)) = A. 

U +  4 $  dz (1 - z)gk(z) 1: drl W- 12 [: dt s(t))I2 . 

Correspondingly, instead of equations (B.8), (B.lO) we get 

and 

where~, ,oJodxg~(x)=J0  1 1 &t(l-x)g&r). 

Simple analysis of the integral in equation (B.11) shows that actually it is the non- 
zero derivative g&) near the point x = 1 which is important in the asymptotic regime. 
Whatever the function go(x) is in the region (1 - x )  >> (ye)-'/*, it is always decaying like e-' there, while for (1 - x )  << (y{)-'/' the decay is (y{)-'/ ' ,  where y = gh(x = 1): 

(B.13) 
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Besides, using (B.12), from equation (B.9) one finds that g(x = 0; 8 )  - 
scales 5 >> 1 /U the leading contribution to the quantity 2 
region (1 - x )  << -&: 

V Dotsenko and D E Feldman 

Note now that according to the above asymptotic behaviour of the function g ( x ;  c) at 
id g2(x:  $) comes from the 

(B.14) 

Then, coming back to equation (B.3) we find 

which is self-consistent with the assumption q(c) - #-’ (with s > 1) made above. 
Therefore, the asymptotic behaviour of the solution for p = 4 at scales 

given by equation (B.13). 
>> 1 /U is 
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